

Journal of Nonlinear Analysis and Optimization

Vol. 15, Issue. 1, No.11: 2024

ISSN : 1906-9685

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

HARNESSING NATURE INSPIRED OPTIMIZATION TECHNIQUE USING

HYPERPARAMETER TUNING IN MACHINE LEARNING ALGORITHM

T.CHANDRIKA (20NM1A05H7), P.AVANTHIKA (20NM1A05D5) , S.ANUSHA

(20NM1A05G7) Bachelor of Technology in Computer Science & Engineering

Dr. D. Karun Kumar Reddy Associate Professor Vignan’s Institute of Engineering for Women

ABSTRACT

Hyper parameter tuning plays a critical role in the success of machine learning models by optimizing

the configuration settings that govern model performance. Traditional methods such as grid search and

random search are effective but computationally expensive, especially for complex models with

numerous hyper parameters. To address this challenge, nature-inspired optimization techniques have

emerged as promising alternatives due to their ability to efficiently explore large search spaces and

find near-optimal solutions. Specifically, algorithms inspired by natural phenomena such as swarm

behavior, evolutionary processes, and foraging strategies are explored. Each optimization algorithm

leverages unique principles derived from nature to guide the search for optimal hyper parameter

configurations. Experimental results demonstrate the effectiveness of the nature-inspired optimization

techniques in improving the performance of machine learning models through hyper parameter tuning.

By efficiently navigating the hyper parameter space, these algorithms enable the discovery of

configurations that lead to enhanced predictive accuracy, faster convergence, and improved

generalization. In conclusion, integrating nature-inspired optimization techniques into hyper parameter

tuning processes offers a powerful approach to enhance the performance and efficiency of machine

learning models. Future research directions may explore hybrid approaches that combine multiple

optimization algorithms or adapt these techniques to emerging paradigms such as deep learning and

reinforcement learning. KEYWORDS: Hyper parameter tuning, Nature-inspired optimization,

Differential Evolution, Optimization algorithms, Model optimization, Search space exploration,

Computational efficiency, Performance improve.

1. INTRODUCTION

In the realm of health management, maintaining optimal blood glucose levels stands as a cornerstone

of general well-being, especially for those who are active or prone to diseases such as diabetes. The

delicate balance of blood sugar levels impacts various functions of the body, and deviation from the

norm can lead to a whole series of health complications. Traditionally, monitoring blood glucose levels

has relied heavily on invasive techniques such as blood tests, which can be uncomfortable, and

sometimes impractical for continuous monitoring. However, recent strides in medical technology and

research have shown a promising path: the exploration of superficial body features as potential

indicators of blood glucose levels.

Superficial body features encompass a spectrum of observable characteristics, ranging from skin

texture and color to subtle facial expressions and even the composition of breath. These outward

manifestations of internal physiology offer attractive prospects for non-invasive and continuous

monitoring of blood glucose levels. By harnessing the body and its subtle cues and signals, researchers

and clinicians aim to develop innovative approaches that can provide real-time insight into glucose

dynamics, enabling more proactive and personalized management strategies.

Blood glucose level refers to the concentration of glucose (a type of sugar) present in the bloodstream.

Glucose is an important source of energy for cells, and its levels are strictly regulated by the body to

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00284 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

ensure proper functioning. Maintaining proper blood glucose level is essential for overall health, as

excess or insufficient levels can lead to various health issues. The hormone insulin, produced by the

pancreas, plays a key role in regulating blood glucose. When you eat, especially carbohydrates, the

digestive system breaks down the food into glucose, which enters the bloodstream. Insulin facilitates

the uptake of glucose by cells, where it can be used as energy or stored for later use. In people without

diabetes, the body effectively balances insulin production and glucose utilization to maintain blood

glucose levels in a relatively narrow range, usually around 70-100 mg/dL (3.9-5.6 mmol/L) when

fasting and below 140 mg/dL (7.8 mmol/L) two hours after a meal. For people living with diabetes,

access to affordable treatment, including insulin, is critical to their survival. There is a globally agreed

target to halt the rise in diabetes and obesity by 2025. About 422 million people worldwide have

diabetes, the majority living in low-and middle-income countries, and 1.5 million deaths are directly

attributed to diabetes each year. Both the number of cases and the prevalence of diabetes have been

steadily increasing over the past few decades.

Blood glucose levels play a crucial role in health, particularly for those managing diabetes or other

metabolic conditions. There are two main types of imbalances: Type 1 Hyperglycemia, characterized

by elevated blood glucose levels, typically stemming from factors like insufficient insulin, stress, poor

diet, or medication issues. Symptoms include increased thirst, frequent urination, fatigue, blurred

vision, headaches, and slow wound healing. Long-term hyperglycemia can lead to complications such

as cardiovascular disease, kidney d image, nerve damage, and vision problems. On the other hand,

Type 2 Hypoglycemia occurs when blood glucose levels drop below normal, often due to excessive

insulin or medication, missed meals, or increased physical activity. Symptoms of hypoglycemia

include shivering, sweating, paleness, rapid heartbeat, confusion, or irritability. Severe hypoglycemia

can lead to unconsciousness or seizures, and repeated episodes can weaken the body's ability to detect

low blood sugar, raising the risk of severe seizures over time.

1.1 Motivation

This project is driven by the urgent necessity for efficient blood glucose monitoring, especially crucial

for individuals navigating conditions such as diabetes. Conventional methods are often invasive and

intermittent, posing challenges for continuous management. Seeking non-invasive, continuous

monitoring solutions, we aim to relieve the burden on patients and healthcare providers, facilitating

proactive interventions and personalized management. Leveraging Machine learning (ML) algorithms

holds promise in revolutionizing diagnostics and treatment optimization. By harnessing ML's

predictive power, we seek to develop robust models for real-time blood glucose prediction,

empowering individuals with actionable insights. Additionally, exploring nature- inspired

optimization techniques for ML Hyperparameter Tuning(HT) presents an exciting opportunity to

enhance model performance. Drawing inspiration from biological processes, these techniques offer

efficient strategies for navigating complex parameter spaces and optimizing model performance.

Ultimately, our project aims to intersect healthcare innovation, ML, and nature- inspired optimization

to advance personalized healthcare and improve patient outcomes in metabolic health management,

particularly for individuals with diabetes.

1.2 Problem Definition

The central challenge tackled in this project revolves around the critical necessity for precise, non-

invasive, and ongoing monitoring of blood glucose levels, especially pertinent for individuals

managing diabetes or other metabolic conditions. Traditional methods like finger stick testing and

continuous glucose monitoring (CGM) devices are often invasive, cumbersome, and lacking in real-

time insights into glucose dynamics, potentially inaccessible due to cost constraints. Addressing this,

the project aims to develop a ML framework capable of accurately and continuously predicting blood

glucose levels based on superficial body features, requiring diverse datasets encompassing

physiological data like skin texture, color, facial expressions, and breath composition. Additionally, it

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00285 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

seeks to overcome the challenge of HT in ML algorithms by exploring nature-inspired optimization

techniques such as genetic algorithms, particle swarm optimization, enhancing model performance and

generalizability efficiently. By achieving these objectives, the project aims to advance metabolic health

management, enable proactive interventions, and enhance the quality of life for individuals with

diabetes and related conditions.

1.3 Objective of Project

The project has a dual objective: firstly, to develop a ML framework for accurately predicting real-

time blood glucose levels based on superficial body features, utilizing diverse physiological datasets

to train models to discern correlations between these features and glucose levels, thereby enabling non-

invasive and continuous monitoring. Secondly, it aims to tackle the challenge of HT in ML algorithms

by exploring nature- inspired optimization techniques like genetic algorithms and particle swarm

optimization, aiming to efficiently enhance model performance and generalizability. These endeavors

ultimately aim to improve the efficacy of continuous monitoring and management strategies for

individuals managing diabetes and related conditions.

1.4 Limitations of Project

While ambitious, this project faces limitations. Firstly, the efficacy of the proposed ML framework for

predicting blood glucose levels based on superficial body features hinges on dataset quality and

diversity, potentially hindering model generalizability across different populations. Secondly, the

success of nature-inspired optimization techniques for HT depends on various factors such as

algorithm choice, parameter settings, and computational resources, which may not be universally

available. Additionally, predicting blood glucose levels is intricate due to factors like diet, exercise,

stress, and medication, potentially leading to discrepancies between predicted and actual levels. Lastly,

integrating the ML framework into healthcare systems poses challenges including user interface

design, data privacy, regulatory compliance, and scalability, necessitating collaboration across

disciplines for effective implementation and long-term sustainability.

CHAPTER-2 LITERATURE SURVEY

2.1 Introduction

This chapter provides an overview of previous research on knowledge sharing. It is important to set

the context of the literature review work by first providing an explanation of its specific purpose for

this particular project. The main purpose of the literature review work was to survey previous studies.

This was in order to scope out the key data collection requirements for the primary research to be

conducted.

2.2 Existing System

The advancement of medical technology, coupled with the exponential growth of data, presents an

opportune moment to leverage ML algorithms for blood glucose prediction and monitoring. ML

techniques have demonstrated remarkable potential in various healthcare applications, promising to

revolutionize diagnostics, treatment optimization, and patient care. Rastogi et al. (R. Rastogi and

M. Bansal, “Diabetes prediction model using data mining techniques”, Measurement: Journal of the

International Measurement Confederation (IMEKO), Measurement: Sensors Volume 25, February

2023), by using the Kaggle data set, the authors found that the LR gives more accurate results i.e.,

82.46% as compared to other ML methods. Bhat et al. (S. S. Bhat, V. Selvam, G. A. Ansari, M. D.

Ansari, and M H. Rahman, “Prevalence and Early Prediction of Diabetes Using Machine Learning in

North Kashmir: A Case Study of District Bandipora”, Computational Intelligence and Neuroscience,

Volume 2022, Article ID 2789760) have observed that a RF works best with the highest accuracy of

98% among the others. The dataset used in their research was a clinical dataset collected from clinical

diabetic professionals. Patel et al. (K. Patel,

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00286 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

M. Nair and S. Phansekar, “Diabetes Prediction using Machine Learning”, International Journal of

Scientific & Engineering Research Volume 12, Issue 3, March-2021) have proved that LR gives the

highest accuracy of 78% in comparison to other models.

ML involves the development of algorithms and statistical models enabling

computers to perform tasks without explicit instructions, relying on patterns and inference from data.

These algorithms work by first collecting relevant data, pre- processing it to clean noise and handle

missing values, then selecting or extracting meaningful features. Models are chosen based on the

problem at hand, and during training, they learn from labeled or unlabeled data by adjusting internal

parameters to minimize prediction errors. Evaluation using separate test data assesses model

performance, followed by potential fine-tuning. Once trained, the model can make predictions or

decisions on new data. Ultimately, ML algorithms aim to generalize patterns from training data to

make accurate predictions or decisions on unseen data, with algorithm selection influenced by factors

like data characteristics, dataset size, and the problem domain.

Table 2.1: Analysis of Existing System for past few years
S.

No.

Author(year) Method Techniques Accuracy(in

%)

1. Rastogi et al. (2023) SVM, NB Classifier,

LR and RF

Oversampling LR – 82.46%

2. Febrian et al. (2023) KNN and NB ML Algorithm KNN - 69.37%

NB - 71.37%

3. Bhat et al. (2022) LR, DT, GB, SVM, RF

and MP

Sampling RF - 98%

4. Patel et al. (2021) LR, RF, KNN, DT ML Algorithm LR with 78%

5. Xue et al. (2020) SVM, NB, Light GBM ML Algorithm SVM - 96.54%

6. Soni et al. (2020) SVM, RF, KNN, LR,

DT, GB

ML Algorithm RF - 77%

7. Muhammad et al.

(2020)

LR, SVM, KNN, RF,

NB, GB

ML Algorithm RF - 88.76%

8. Dutta et al. (2019) KNN, LR, XGB, SVM,

RF

Feature

Selection,
K-fold cross-

validation

LR -96%

9. Sisodia et al. (2018) SVM, NB, DT ML Algorithm NB – 95.2%

10. Zou et al. (2018) RF ML Algorithm RF - 80.84%

2.3 Disadvantages Of Existing System

The major drawbacks of ML algorithms are oversampling and Feature Selection:

Feature Selection:

A popular method for reducing the dimensionality of datasets is feature selection, which involves

choosing a subset of pertinent features. The possible loss of information is a major negative.

Eliminating features entails getting rid of information that can be valuable and enhance the

functionality of the model. The accuracy or predictive power of the model may decline if significant

features are eliminated during the feature selection phase. Furthermore, the curse of dimensionality

makes feature selection more difficult in high dimensional datasets. The volume of the feature space

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00287 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

expands exponentially with the amount of features, making it more difficult to identify the ideal subset

of features that really improve the performance of the model. Furthermore, if feature selection

techniques are not used correctly, bias may be introduced, producing models that are biased towards

particular features or miss significant patterns in the data. Moreover, feature selection may fail to take

into account interdependencies between features, hence neglecting the collective impact of features on

the model's performance and perhaps producing less-than-ideal model results.

Sampling:

Though it's an essential method for handling big datasets and dealing with processing limitations,

sampling in ML has a number of disadvantages of its own. Because sampling has intrinsic

representativeness difficulties, one significant constraint is the possibility of adding bias or

inaccuracies into the model. The diversity and richness of the full dataset may not be fully captured

when a subset of data is chosen for training or evaluation, which could result in a skewed or partial

representation of the underlying distribution. The outcome of this could be models that are unduly

impacted by specific traits or patterns seen in the sampled subset, which could result in poor

generalization abilities and inaccurate predictions on fresh data. Furthermore, sampling may result in

the loss of critical information, especially if the sampled group does not fully capture significant

patterns or uncommon events. Moreover, scaling issues may arise due to the computational difficulty

of sampling strategies, particularly in situations involving big datasets or environments with limited

resources. Despite these drawbacks, careful consideration should be paid to validation procedures and

sampling strategies in order to lower risks and ensure the development of reliable and accurate ML

models. While using traditional ML methods, we may or may not achieve accurate results when

comparing different ML algorithms. If we do obtain some level of accuracy, it can vary across different

datasets, leading to inconsistent results. Therefore, we employ HT with nature- inspired optimization

techniques to identify the ideal parameters for achieving optimal solutions.

2.4 Proposed System

In ML, Hyperparameter Tuning (HT) is a crucial procedure that optimizes the configuration settings,

or hyperparameters, that control a model's learning process. Hyperparameters, in contrast to

parameters, are fixed values that control the algorithm's behavior and performance. Parameters are

learned from the data during training. The aim of HT is to identify the ideal hyperparameter

combination that maximizes the model's performance on a given task or dataset. In this procedure, a

predetermined set of hyperparameter values or ranges are often searched through methodically, an

evaluation metric is selected to assess the model's performance, and the hyperparameters are repeatedly

refined based on the performance that is seen. For HT, a variety of optimization methods can be used,

such as grid search, random search, Bayesian optimization, and more sophisticated algorithms like

genetic algorithms. In order to guarantee that ML models function as best they can in practical

situations, HT is crucial for enhancing model robustness, accuracy, and generalization capacity.

HT is closely linked to Nature Inspired Optimization (NIO) techniques in the context of ML. In ML,

hyperparameters are configuration settings that are not learned from the data but rather are specified

before the training process begins. Examples of hyperparameters include learning rate, regularization

strength, number of hidden layers in a neural network, or the depth of a Decision Tree(DT). The link

between HT and NIO lies in their shared goal of finding the best configuration within a search space.

HT aims

to identify the optimal set of hyperparameters for a ML model to achieve the best performance on a

given task. This involves exploring a multidimensional space of hyperparameters and evaluating the

model's performance using a chosen metric, such as accuracy or loss. NIO techniques provide powerful

tools for efficiently searching through the hyperparameter space. These algorithms leverage principles

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00288 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

from natural systems, such as natural selection, genetic variation, or collective behavior, to guide the

search towards promising regions of the solution space. Among the array of nature-inspired

optimization techniques, the Firefly algorithm (FA) stands out as one method in which we harness the

principles of natural phenomena. This algorithm, like others of its kind, draws inspiration from the

behaviors observed in nature to address optimization challenges. By mimicking the behavior of

fireflies, it navigates through solution spaces seeking optimal outcomes. The FA, alongside its

counterparts, contributes to solving complex problems efficiently and effectively across diverse

domains such as engineering, computer science, finance, and biology.

2.5 Conclusion

While using traditional ML methods, we may or may not achieve accurate results when comparing

different ML algorithms. If we do obtain some level of accuracy, it can vary across different datasets,

leading to inconsistent results. Therefore, we employ HT with nature-inspired optimization techniques

to identify the ideal parameters for achieving optimal solutions.

CHAPTER-3 SYSTEM ANALYSIS AND DESIGN

3.1 Introduction

System analysis is an important activity that takes place when we are building a new information

system or changing existing ones. The Analysis is used to gain an understanding of an existing and

what is required for it. At the conclusion of the analysis, there is a system description and asset of

requirements for a new system. If there is no existing system, the analysis defines only the

requirements.

This phase is a detailed appraisal of the system. It also includes the system's problems what the end-

users required of any new or changed system. After this phase, analyst should have complied with both

the detailed operation of the system what is required for the new system. The appraisal includes fining

how the system works.

Thus, a rule, system analysis is a difficult but rewarding job. There are many constraints to be complied

with in this work and people to be complied with in this work and people to satisfy. But there is the

reward of seeing a new system does its job perfectly.

3.2 Software Requirement Specification

Requirements specification is the starting point of the software development activity. The

Requirements specification states the goals and objectives of the software, describing it in the context

of the computer-based system. The requirements specification includes an information description,

functional description, non-functional description. Further classified into three types. Those are:

3.2.1 Software Requirement

The functional requirements or the overall description documents include the product perspective and

features, operating system and operating environment, graphics requirements, design constraints, and

user documentation.

The appropriation of requirements and implementation constraints gives the general

overview of the project in regards to what the areas of strength and deficit are and how to tackle them.

• Python idle 3.8 version (or)

• Anaconda 3.8 (or)

• Jupiter (or)

• Google collab

• Operating System (windows or any higher version of windows)

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00289 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

3.2.2 Hardware Requirement

Minimum hardware requirements depend very much on the particular software a given enthought

Python / Canopy / VS Code user develops. Applications that need to store large arrays/objects in

memory will require more RAM, whereas applications that need to perform numerous calculations or

tasks more quickly will require a faster processor.

• PROCESSOR: Intel core i3

• RAM: 4GB

• HARD DISK: 2TB

• Input device: Standard Keyboard and Mouse

• Output device: High-resolution monitor

3.2.3 User Requirement

The user requirement document can be used as a guideline to planning cost timetable, milestone,

testing etc., the explicit nature of user requirements document allows customer to show it to various

stakeholders to make sure all necessary described.

3.3 Algorithms

3.3.1 Decision Tree

Decision Tree (DT) algorithm is a popular supervised learning algorithm used for both classification

and regression tasks in ML. It's a versatile algorithm known for its simplicity, interpretability, and

ability to handle both numerical and categorical data. The algorithm works by recursively partitioning

the feature space into smaller regions,

eventually forming a tree-like structure composed of decision nodes and leaf nodes.

The following algorithm simplifies the working of a DT:

• Step I: Start the decision tree with a root node, X. Here, X contains the complete dataset.

• Step II: Determine the best attribute in dataset X to split it using the ‘attribute selection measure

(ASM).

• Step III: Divide X into subsets containing possible values for the best attributes.

• Step IV: Generate a tree node that contains the best attribute.

• Step V: Make new decision trees recursively by using the subsets of the dataset X created in

step III. Continue the process until you reach a point where you cannot further classify the nodes. Call

the final node a leaf node.

Figure 3.1: Working flow of the Decision Tree Algorithm

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00290 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

In the above algorithm, the attribute selection measure refers to a type of heuristic used for selecting

the splitting criterion in a way that best separates a given dataset (X) into individual subsets. In other

words, it determines how the datasets or subsets at a given node are to be split.

DT algorithm is intuitive and easy to interpret, making it a valuable tool for understanding and

explaining the decision-making process in ML models. However, it's susceptible to overfitting,

especially with complex datasets, which can be mitigated using techniques like pruning or ensemble

methods like Random Forest.

3.3.2 Random Forest

Random Forest (RF) is a popular ensemble learning algorithm used in ML for both classification and

regression tasks. It works by constructing multiple decision trees during training and outputting the

class that is the mode of the classes (classification) or mean prediction (regression) of the individual

trees. Below is a simplified explanation of the RF algorithm and its step-by-step process:

Random Forest Algorithm

• Random Sampling: Randomly select 'n' samples from the dataset with replacement (bootstrap

samples).

• Feature Selection: Randomly select 'm' features from the dataset.

• Decision Tree Construction: Construct a decision tree based on the selected samples and

features. At each node:

Choose the best split among the 'm' features.

Split the node into child nodes based on the selected split.

• Repeat Steps 1-3: Repeat steps 1-3 'k' times to create 'k' decision trees.

• Voting: For classification tasks, each tree "votes" for the class of the input sample. For

regression tasks, each tree provides a prediction.

• Aggregate Results: Aggregate the votes or predictions from all trees to make a final decision:

For classification, use majority voting to select the class with the most votes.

For regression, take the average of all predictions.

Figure 3.2: Working flow of the Random Forest Algorithm

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00291 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

The key advantages of RF include its ability to handle high-dimensional data, feature importance

estimation, and resistance to overfitting. Additionally, it is less sensitive to noisy data compared to

individual DTs. RF is a versatile algorithm suitable for a wide range of applications in ML.

3.3.3 Logistic Regression

Logistic Regression (LR) is a statistical method used for binary classification tasks, where the outcome

variable is categorical with two possible values. It's a fundamental algorithm in ML, particularly in

scenarios where the relationship between the independent variables and the probability of a particular

outcome needs to be modeled. Logistic Regression algorithm:

• Initialize the Parameters: Start by initializing the weights and the bias. These are the parameters

that the algorithm will adjust during training to fit the data.

Calculate the Linear Combination: For each data point, calculate the linear combination of the input

features with the weights. Add the bias term to this result.

• Apply the Sigmoid Function: Pass the linear combination through the sigmoid function. This

function transforms the output into a value between 0 and 1, which can be interpreted as the probability

of the input belonging to the positive class.

• Calculate the Loss: Compare the predicted probabilities with the actual labels to calculate the

loss. One common loss function for LR is the binary cross-entropy loss.

• Update the Parameters: Use gradient descent (or another optimization algorithm) to update the

weights and bias in the direction that reduces the loss. This step involves calculating the gradient of

the loss function with respect to the parameters.

• Repeat: Repeat steps 2-5 for a fixed number of iterations or until the loss converges to a

satisfactory level.

• Prediction: Once the model is trained, use it to predict the probability of new data points

belonging to the positive class. A threshold can be applied to these probabilities to make binary

predictions.

• Evaluation: Evaluate the performance of the model using metrics such as accuracy, precision,

recall, or F1 score on a separate validation or test set.

• Iterate and Improve: Iterate on the model by adjusting hyperparameters, feature engineering,

or trying different optimization algorithms to improve performance.

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00292 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

Figure 3.3: Working flow of the Logistic Regression Algorithm

Nonetheless, LR serves as a valuable tool in predictive modeling, often serving as a benchmark against

which more sophisticated algorithms are compared. As the field of ML continues to evolve, LR

remains a cornerstone, offering a solid foundation upon which more advanced techniques are built.

3.3.4 K-Nearest Neighbors (KNN) Algorithm

The k-Nearest Neighbors (KNN) algorithm is a simple yet effective method used for classification and

regression tasks in ML. It operates by storing all available cases and classifying new cases based on

their similarity to existing cases. In classification, the algorithm assigns the most common class among

the k nearest neighbors of a data point, while in regression, it calculates the average of the k nearest

neighbors' values. KNN's performance heavily relies on the choice of the distance metric and the

number of neighbors (k).

K-Nearest Neighbors (KNN) algorithm:

• Choose the Number of Neighbours (K): Decide on the number of neighbours to consider when

making predictions. This is a hyperparameter that needs to be specified upfront.

• Select a Distance Metric: Choose a distance metric (e.g., Euclidean distance, Manhattan

distance) to measure the distance between data points. This metric determines how "close" two points

are in the feature space.

• Prepare the Training Data: Store the feature values and corresponding class labels of the

training dataset.

• Input New Data: Receive a new data point for which you want to make a prediction.

• Calculate Distances: Calculate the distance between the new data point and all points in the

training dataset using the chosen distance metric.

• Find Nearest Neighbours: Select the K data points from the training dataset that are closest to

the new data point based on the calculated distances.

• Majority Vote: For classification, determine the class label by taking a majority vote among

the K nearest neighbours. The class with the highest count among the

neighbours is assigned to the new data point.

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00293 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

• Weighted Vote (Optional): Optionally, you can assign weights to the neighbours based on their

distance to the new data point. Closer neighbours can be given higher weights, so their influence on

the prediction is greater.

• Output Prediction: For regression, the predicted value can be the average (or weighted average)

of the target values of the K nearest neighbours. For classification, the predicted class label is the one

determined by the majority vote.

• Repeat: Repeat steps 4-9 for each new data point you want to classify or predict.

• Evaluation: Evaluate the performance of the model using metrics such as accuracy, precision,

recall, or F1 score on a separate validation or test set to assess its generalization ability.

• Iterate and Improve: Iterate on the model by adjusting hyperparameters (e.g., K, distance

metric), feature engineering, or trying different strategies to handle ties or weights to improve

performances.

Figure 3.4: Working flow of the Logistic Regression Algorithm

Despite its simplicity, KNN can be computationally expensive for large datasets,

especially in high-dimensional spaces, and it does not learn explicit models from the data. However,

its ease of implementation and interpretability make it a popular choice, particularly for small to

medium- sized datasets or as a baseline model for comparison in more complex tasks.

3.4 Conclusion

We presented an analysis and detailed explanation of the algorithm. We have analyzed the working of

each algorithm in and efficient manner. Now we are moving to the methodology part.

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00294 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

CHAPTER-4 METHODOLOGY

4.1 Hyperparameter Tuning

Hyperparameter tuning (HT) is the process of optimizing the settings of a ML model that are not

learned from the data but are predefined by the practitioner. These settings, known as hyperparameters,

profoundly influence the model's performance and generalization ability. HT involves systematically

exploring different combinations of hyperparameters to find the configuration that maximizes the

model's performance on a validation dataset. Techniques such as grid search, random search, or

Bayesian optimization are commonly used to efficiently search the hyperparameter space. By fine-

tuning these settings, practitioners aim to improve the model's accuracy, robustness, and ability to

generalize to unseen data.

Figure 4.1: Working procedure of Hyperparameter Tuning

Let’s break down the hyperparameter tuning working procedure step by step:

1. Master Dataset

Initial Dataset: Begin with a master dataset containing both features (inputs) and the target variable

(output) for your machine learning task.

2. Splitting into Training and Testing datasets

Data Splitting: Divide the master dataset into two subsets – a training dataset and a testing dataset.

Typical Split: Common splits include 80% for training and 20% for testing, but the exact ratio can

vary.

3. Model Training on Training Datasets

Select Model: Choose a machine learning model for your task (e.g., DT, RF, LR, and

KNN).Hyperparameter Initialization: Set initial values for hyperparameters (e.g., learning rate, depth

of the tree).

Training: Train the model on the training dataset using the chosen hyperparameters.

4. Model Evaluation on Testing Dataset

Testing Dataset: Use the testing dataset, which the model has not seen during training, to evaluate its

performance.

Metric Evaluation: Assess the model's performance using relevant metrics (accuracy, precision, recall,

F1 score).

5. Initial Model Outcomes

Outcome Analysis: Analyze the initial outcomes and performance of the model on the testing dataset.

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00295 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

Identify Issues: Identify issues such as overfitting or underfitting based on the model's performance.

6. Hyperparameter Tuning

Define Search Space: Define a search space for hyperparameters (e.g., ranges for learning rates, tree

depths).

Choose Optimization Method: Select an optimization method (e.g., grid search, random search, nature-

inspired optimization like Firefly Algorithm).

Iterative Process: Iteratively adjust hyperparameters, train the model on the training dataset, and

evaluate on the testing dataset.

7. Finalizing Model

Optimal Hyperparameters: Identify the set of hyperparameters that result in the best performance on

the testing dataset.

Train Final Model: Train the final model using the optimal hyperparameters on the entire training

dataset.

8. Model Evaluation with Optimal Hyperparameters:

Testing Dataset Evaluation: Evaluate the model with optimal hyperparameters on the testing dataset

to ensure to ensure generalization.

9. Final Outcomes and Model Deployment:

Performance Analysis: Analyze the final performance metrics to ensure

improvement.

Deployment: If satisfied with the model's performance, deploy it for predictions on new, unseen data.

10. Documentation and Reporting:

Record Hyperparameters: Document the final set of hyperparameters used in the optimized model.

Report Outcomes: Summarize the performance improvements achieved through hyperparameter

tuning.

4.2 Hyperparameter Tuning With Nature-Inspired Optimization

HT is closely linked to NIO techniques in the context of ML. In ML, hyperparameters are configuration

settings that are not learned from the data but rather are specified before the training process begins.

Examples of hyperparameters include learning rate, regularization strength, number of hidden layers

in a neural network, or the depth of a DT. The link between HT and NIO lies in their shared goal of

finding the best configuration within a search space. HT aims to identify the optimal set of

hyperparameters for a ML model to achieve the best performance on a given task. This involves

exploring a multidimensional space of hyperparameters and evaluating the model's performance using

a chosen metric, such as accuracy or loss.

NIO techniques provide powerful tools for efficiently searching through the hyperparameter space.

These algorithms leverage principles from natural systems, such as natural selection, genetic variation,

or collective behavior, to guide the search towards promising regions of the solution space.

4.3 Nature-Inspired Optimization Techniques

Nature-inspired optimization techniques are a class of algorithms that draw inspiration from natural

phenomena or processes to solve optimization problems. These

algorithms are designed to mimic the behavior of biological systems, physical processes, or ecological

interactions in nature. Examples include genetic algorithms, particle swarm optimization, simulated

annealing, ant colony optimization, and evolutionary strategies. These techniques often leverage

concepts such as natural selection, mutation, reproduction, swarm intelligence, or the dynamics of

physical systems to iteratively search for optimal solutions to complex problems. Nature-inspired

optimization algorithms are widely used in various fields, including engineering, computer science,

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00296 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

finance, and biology, due to their ability to efficiently explore large solution spaces and find high-

quality solutions.

Among the array of nature-inspired optimization techniques, the FA stands out as one method in which

we harness the principles of natural phenomena. This algorithm, like others of its kind, draws

inspiration from the behaviors observed in nature to address optimization challenges. By mimicking

the behavior of fireflies, it navigates through solution spaces seeking optimal outcomes. The FA,

alongside its counterparts, contributes to solving complex problems efficiently and effectively across

diverse domains such as engineering, computer science, finance, and biology. Now let's talk about the

FA, one of the techniques for NIO.

4.4 Firefly Optimization Algorithm

In the domain of ML, the efficacy of models hinges on selecting optimal hyperparameters, a task often

challenging due to the intricate and high-dimensional search space involved. Firefly Optimization

Algorithm (FA), inspired by the flashing behavior of fireflies in attracting mates, has emerged as a

promising optimization technique. It was proposed by Xin-She Yang in 2008 and is particularly useful

for solving continuous optimization problems. Drawing on the principles of attraction based on

brightness and distance among fireflies, FA iteratively adjusts solutions' positions in the search space,

akin to optimizing hyperparameters. Notably, FA offers robustness in navigating complex spaces,

inherent parallelizability for scalability, and ease of implementation without requiring intricate

mathematical formulations. Integrating FA into HT pipelines holds the promise of revolutionizing

model optimization, potentially enhancing efficiency, reducing computational overhead, and

expediting development cycles. Through experimentation, we aim to compare FA's performance with

traditional

techniques, contributing to advancing optimization methods in ML and fostering the adoption of

nature-inspired approaches in practical settings. Here's a step-by-step overview of the FA:

1. Initialization:

Initialize the population of fireflies with random solutions. Let 𝑵 denote the number of fireflies in the

population, and 𝑫 denotes the dimensionality of the search space. Each firefly 𝒊 is represented by its

position 𝑿𝒊 in the D-dimensional search space.

2. Evaluation:

Evaluate the brightness Ii of each firefly based on its fitness value, which is determined by the objective

function (𝑿𝒊). Higher fitness values yield brighter fireflies.

Mathematically, the brightness 𝑰𝒊 of firefly 𝒊 can be computed as:

𝑰𝒊 = 𝒇(𝑿𝒊)

3. Attraction:

Calculate the attractiveness 𝐀𝐢𝐣 of each firefly 𝐢 towards every other firefly j based on their brightness

and distance.

The attractiveness 𝑨𝒊𝒋 is inversely proportional to the square of the distance between fireflies i and j

and directly proportional to the brightness 𝐈𝐣 of firefly j.

The attractiveness of 𝐀𝐢𝐣 is given by:

𝑨𝒊𝒋 = 𝖰𝒆 − 𝒓𝟐

Where:

𝖰 is the attractiveness scaling coefficient

 is the absorption coefficient.

𝒓𝒊𝒋 is the Euclidean distance between fireflies 𝐢 and 𝐣.

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00297 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

4. Movement:

Update the position of each firefly based on the attractiveness of other fireflies. Firefly i moves towards

the brighter firefly j based on the attractiveness 𝑨𝒊𝒋 and a randomization factor α.

The updated positio𝒊n 𝑿′ of Firefly i is given by:

𝐗′𝐢 = 𝚾 𝐢 + 𝛽𝐞 − 𝗒𝐫𝟐 . (𝐗𝐣 − 𝐗𝐢) + 𝑎. 𝖾

5. Termination Criterion:

Define a termination criterion, such as reaching a maximum number of iterations or achieving a desired

level of convergence.

The termination criterion in the FA typically involves defining a stopping condition based on a certain

number of iterations or reaching a desired level of convergence. One commonly used termination

criterion is to halt the algorithm after a specified maximum number of iterations 𝐓𝐦𝐚𝐱 has been

reached.

Mathematically, the termination criterion can be defined as follows:

𝐭 > 𝐓𝐦𝐚𝐱

where:

• 𝐭 is the current iteration number.

• 𝐓𝐦𝐚𝐱 is the maximum number of iterations allowed.

Once the current iteration number exceeds the maximum allowed number of iterations, the algorithm

terminates, and the best solutions found so far are returned. This termination criterion ensures that the

algorithm does not continue indefinitely and provides a predefined stopping point for the optimization

process.

6. Iterations:

Repeat steps 2-4 until the termination criterion is met.

7. Solution Retrieval:

Once the algorithm converges or reaches the termination criterion, retrieve the best solution or

solutions found during the optimization process.

8. Post-processing:

Perform any necessary post-processing tasks, such as fine-tuning the parameters of the best solution

or analysing the convergence behaviour of the algorithm.

In essence, the FA continuously adjusts the positions of fireflies, influenced by their mutual appeal,

with the goal of enhancing brightness (fitness) while reducing distance. This iterative process enables

the algorithm to navigate the search space effectively, ultimately uncovering optimal solutions for the

given

optimization challenge.

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00298 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

Figure 4.2: Flowchart Of Firefly Algorithm

4.5 Sample Code

4.5.1 Decision Tree

Training part:

from sklearn_nature_inspired_algorithms.model_selection import NatureInspiredSearchCV

from sklearn.tree import DecisionTreeClassifier param_grid = {

'max_depth': range(2, 40, 2),

'min_samples_split': range(2, 20, 2), 'max_features': ["sqrt", "log2"],

}

clf = DecisionTreeClassifier(random_state=42) nia_search = NatureInspiredSearchCV(

clf, param_grid, algorithm='fa',

population_size=5, max_n_gen=10, max_stagnating_gen=10, runs=3,

random_state=None, # or any number if you want same results on each run

)

nia_search.fit(X_train, y_train)

Output:

Fitting at most 342 candidates

Optimization finished, 334 candidates were fitted

NatureInspiredSearchCV

estimator: DecisionTreeClassifier

 DecisionTreeClassifier(random_state=42)

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00299 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

Testing part :

from sklearn_nature_inspired_algorithms.model_selection import NatureInspiredSearchCV

from sklearn.tree import DecisionTreeClassifier param_grid = {

'max_depth': range(2, 40, 2),

'min_samples_split': range(2, 20, 2), 'max_features': ["sqrt", "log2"],

}

clf = DecisionTreeClassifier(random_state=42) nia_search = NatureInspiredSearchCV(

clf, param_grid, algorithm='fa',

population_size=5, max_n_gen=10, max_stagnating_gen=10, runs=3,

random_state=None, # or any number if you want same results on each run

)

nia_search.fit(X_test, y_test)

Output:

Fitting at most 342 candidates

Optimization finished, 312 candidates were fitted

NatureInspiredSearchCV

estimator: DecisionTreeClassifier

4.5.2 Random Forest

Training part:

from sklearn_nature_inspired_algorithms.model_selection import NatureInspiredSearchCV

from sklearn.ensemble import RandomForestClassifier param_grid = {

'n_estimators': range(20, 100, 20),

'max_depth': range(2, 40, 2),

'min_samples_split': range(2, 20, 2), 'max_features': ['sqrt', 'log2']

}

clf = RandomForestClassifier(random_state=42) nia_search = NatureInspiredSearchCV(

clf, param_grid, cv=3, verbose=0, algorithm='fa',

population_size=5, max_n_gen=10, max_stagnating_gen=10, runs=3,

n_jobs=-1, scoring='f1_macro', random_state=42)

nia_search.fit(X_train, y_train)

Output:

NatureInspiredSearchCV

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00300 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

estimator: RandomForestClassifier

Testing part:

from sklearn_nature_inspired_algorithms.model_selection import NatureInspiredSearchCV

from sklearn.ensemble import RandomForestClassifier param_grid = {

'n_estimators': range(20, 100, 20),

'max_depth': range(2, 40, 2),

'min_samples_split': range(2, 20, 2), 'max_features': ['sqrt', 'log2']

}

clf = RandomForestClassifier(random_state=42) nia_search = NatureInspiredSearchCV(

clf, param_grid, cv=3, verbose=0, algorithm='fa',

population_size=5, max_n_gen=10, max_stagnating_gen=10, runs=3,

n_jobs=-1,

)

nia_search.fit(X_test, y_test)

Output:

NatureInspiredSearchCV

estimator: RandomForestClassifier

 RandomForestClassifier(random_state=42)

4.5.3 K- Nearest Neighbours Training part:

from sklearn_nature_inspired_algorithms.model_selection import NatureInspiredSearchCV

from sklearn.neighbors import KNeighborsClassifier param_grid = {

'n_neighbors': range(1, 21), # Number of neighbors

'weights': ['uniform', 'distance'], # Weight function used in prediction 'p': [1, 2] # Power parameter for

Minkowski distance

}

clf = KNeighborsClassifier() nia_search = NatureInspiredSearchCV(clf,

param_grid,

algorithm='fa', # hybrid bat algorithm population_size=50, max_n_gen=100, max_stagnating_gen=10,

runs=3,

random_state=None, # or any number if you want the same results on each run

)

nia_search.fit(X_train, y_train) Output:

Fitting at most 80 candidates

Optimization finished, 80 candidates were fitted

NatureInspiredSearchCV

estimator: KNeighborsClassifier

Testing part:

from sklearn_nature_inspired_algorithms.model_selection import NatureInspiredSearchCV

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00301 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report

param_grid = {

'n_neighbors': range(1, 21), # Number of neighbors

'weights': ['uniform', 'distance'], # Weight function used in prediction 'p': [1, 2] # Power parameter for

Minkowski distance

}

clf = KNeighborsClassifier() nia_search = NatureInspiredSearchCV(

clf, param_grid,

algorithm='fa', # hybrid bat algorithm population_size=50, max_n_gen=100, max_stagnating_gen=10,

runs=3,

random_state=None, # or any number if you want the same results on each run

)

nia_search.fit(X_test, y_test)

Output:

Fitting at most 80 candidates

Optimization finished, 80 candidates were fitted

NatureInspiredSearchCV

estimator: KNeighborsClassifier

4.5.4 Logistic Regression Training Part:

from sklearn.linear_model import LogisticRegression

from sklearn_nature_inspired_algorithms.model_selection import NatureInspiredSearchCV

param_grid = { 'penalty': ['l1', 'l2'],

'C': [0.001, 0.01, 0.1, 1, 10, 100],

'solver': ['liblinear', 'saga'] # 'liblinear' for small datasets, 'saga' for large datasets

}

clf = LogisticRegression(random_state=42) nia_search = NatureInspiredSearchCV(

clf, param_grid, algorithm='fa',

population_size=50, max_n_gen=100, max_stagnating_gen=10, runs=3,

random_state=None # or any number if you want the same results on each run

)

nia_search.fit(X_train, y_train)

Output:

Fitting at most 24 candidates

Optimization finished, 24 candidates were fitted

NatureInspiredSearchCV

estimator: LogisticRegression

Testing part:

from sklearn.linear_model import LogisticRegression

from sklearn_nature_inspired_algorithms.model_selection import NatureInspiredSearchCV

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00302 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

Define the parameter grid for hyperparameter tuning param_grid = {

'penalty': ['l1', 'l2'],

'C': [0.001, 0.01, 0.1, 1, 10, 100],

'solver': ['liblinear', 'saga'] # 'liblinear' for small datasets, 'saga' for large datasets

}

Initialize Logistic Regression Classifier clf = LogisticRegression(random_state=42)

Perform hyperparameter tuning using NatureInspiredSearchCV nia_search =

NatureInspiredSearchCV(

clf, param_grid, algorithm='fa',

population_size=50, max_n_gen=100, max_stagnating_gen=10, runs=3,

random_state=None # or any number if you want the same results on each run

)

nia_search.fit(X_test, y_test)

Output:

Fitting at most 24 candidates

Optimization finished, 24 candidates were fitted

NatureInspiredSearchCV

estimator: LogisticRegression

CHAPTER-5

SYSTEM TESTING AND RESULTS

5.1 Introduction

In the context of software development, testing refers to the process of evaluating a software

application or system to identify any discrepancies between expected and actual results. Testing

ensures that the software meets its requirements, functions correctly, and is free of defects before it is

released to the end users. There are different types of testing, such as unit testing, integration testing,

system testing, and acceptance testing, each serving a specific purpose in the software development

lifecycle.

5.1.1 System Testing

The purpose of testing is to discover errors. Testing is the process of trying to discover every

conceivable fault or weakness in a work product. It provides a way to check the functionality of

components, sub-assemblies, assemblies and/or a finished product. It is the process of exercising

software with the intent of ensuring that the software system meets its requirements and user

expectations and does not fail in an unacceptable manner. There are various types of tests. Each test

type addresses a specific testing requirement.

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00303 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

5.1.2 Test cases

Table 5.2 : Testcase table for Diabetic prediction

Test No. Test Case Expected
output

Actual
output

Status

1. Heart Rate =100

Temperature =96.752

Sweating (1/0) = 0

Shivering (1/0)= 1

1 1 Pass

2. Heart Rate =100

Temperature =97.812

0 0 Pass

Sweating (1/0) = 1

Shivering (1/0)= 0

3. Heart Rate =85

Temperature =97.747

Sweating (1/0) = 0

Shivering (1/0)= 1

1 1 Pass

4. Heart Rate =79

Temperature =97.53212

Sweating (1/0) = 0

Shivering (1/0)= 0

0 0 Pass

5.2 Testing Strategies

Testing strategies are approaches or plans that define how testing will be conducted. These strategies

outline the scope, objectives, resources, and schedule for testing activities. They help ensure that

testing is thorough, efficient, and effective. Some common testing strategies include:

5.2.1 White Box Testing

White Box Testing is a testing in which the software tester has knowledge of the inner workings,

structure and language of the software, or at least its purpose. It is purpose. It is used to test areas that

cannot be reached from a black box level. It is performed by software developers.

5.2.2 Black Box Testing

Black Box Testing is testing the functionality of an application without knowing the details of its

implementation including internal program structure, data structures etc. A method of software testing

that verifies the functionality of an application without having specific knowledge of the application's

code/internal structure. Tests are based on requirements and functionality. Test cases for black box

testing are created based on the requirement specifications. Therefore, it is also called as specification-

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00304 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

based testing. This is one type of testing in which the software under test is treated as a black box, in

which you cannot “see” in to it.

The test provides inputs and responds to outputs without considering how the software works.

5.2.3 Unit Testing

Unit testing is usually conducted as part of a combined code and unit test phase of the software

lifecycle, although it is not uncommon for coding and unit testing to be conducted as two distinct

phases.

Test strategy and approach

Field testing will be performed manually and functional tests will be written in detail. Test objectives

• All field entries must work properly.

• Pages must be activated from the identified link.

• The entry screen, messages and responses must not be delayed.

• Features to be tested.

• Verify that the entries are of the correct format.

• No duplicate entries should be allowed.

• All links should take the user to the correct page.

5.2.4 Integration Testing

Software integration testing is the incremental integration testing of two or more integrated software

components on a single platform to produce failures caused by interface defects.

The task of the integration test is to check that components or software applications, e.g. Components

in a software system or – one step up – software applications at the company level – interact without

error.

Test Results:

All the test cases mentioned above passed successfully. No defects encountered.

5.2.4.1 Alpha Testing

This is one type of testing a software product or system conducted at the developer's site. Usually, it

is performed by the end users.

5.2.4.2 Beta Testing

Final testing before releasing application for commercial purpose. It is typically done by end- users or

others

5.2.4.3 Performance Testing

Functional testing conducted to evaluate the compliance of a system or component with specified

performance requirements. It is usually conducted by the performance engineer.

5.3 Results

This section delves into the performance of the models using classification methods, presenting the

results obtained from each algorithm. Evaluation of performance is conducted through the

representation of confusion matrices. Based on the confusion matrix of each model, a series of

equations are derived to determine the classification outcomes.

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00305 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

5.3.1 Performance Evaluation

This subsection primarily emphasizes the confusion matrix as the fundamental visualization method

for evaluating ML models. The confusion matrix displays the count of resulting outputs, which should

collectively add up to the total testing set.

Table 5.1 illustrates the confusion matrix for each algorithm. True positives indicate that the predicted

values are positive and match the actual positive cases. True negatives represent the predicted negative

values that correspond to the actual negative cases. False negatives occur when predicted values are

negative, but they should be positive. Conversely, false positives are predicted positive values that

should be negative. The KNN, DT, RF and LR algorithms demonstrated no negative predictions of

true cases, suggesting accurate prediction of all diabetic cases.

Figure 5.1, Figure 5.2, Figure 5.3, and Figure 5.4 shows the confusion matrix tables of KNN, DT, RF

and LR.

TABLE 5.2: Confusion matrix values from test portion

ML

ALGORITHM

TP FN FP TN

KNN 3319 2 32 41

DT 4159 0 30 54

RF 3328 0 13 53

LR 5000 0 76 15

5.3.2 Performance Analysis

In each classification algorithm, predictive parameters are configured to assess the entire model based

on the values of the confusion matrix. The evaluation metrics considered in this study are accuracy,

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00306 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

recall, precision, and F1 score. Accuracy evaluates the classification model by calculating the total

number of true values (diabetic individuals in this case) divided by the total number of records. The

accuracy of a model is determined by the sum of true positive and true negative predictions divided by

the total number of predictions, including true positives, true negatives, false positives, and false

negatives, as shown in Eq.1.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

(1)

Recall as a critical parameter in medical classifications, especially in gauging the ability of sensors to

accurately detect positive values, such as diabetic cases in our context. It assesses the proportion of

true positive predictions (TP) against the total actual positive cases. Recall is calculated by dividing

the number of true positives by the sum of true positives and false negatives, as shown in Eq. 2.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

(2)

Precision, on the other hand, is equally crucial in medical classifications, focusing on the accuracy of

positive predictions made by the model. It measures the proportion of true positive predictions against

the total predicted positives. Precision is computed by dividing the number of true positives by the

sum of true positives and false positives, as shown in Eq.3.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

(3)

The F1 score serves as a comprehensive metric, combining both precision and recall to provide a

balanced evaluation of the model's performance. It is calculated by taking the harmonic mean of

precision and recall, providing a single value that indicates the overall effectiveness of the

classification model in terms of both false positives and false negatives, as shown in Eq.4.

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2(𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙) (4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

5.3.3 Results and Discussion

Through the 16968 records of the data set, there were 16641 diabetic people, and the rest, which is

only 328, were non-diabetic.

Four different machine-learning models were applied, each undergoing HT through FA, subsequent to

splitting the dataset into the training and testing sets. The major parameters covered in this work are

Accuracy. Moreover, a summarizing graph will be presented to compare the performance of models

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00307 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

trained and tested with optimization techniques against those without optimization, as shown in

Fig.5.5.

Figure 5.5: Comparison of Model Performance with and without Optimization Techniques

Receiver Operating Characteristic (ROC) curves are utilized to evaluate the performance of models

trained and tested with optimization techniques by plotting the true positive rate (TPR) against the

false positive rate (FPR) across various classification thresholds. Models trained with optimization

techniques often yield ROC curves that exhibit superior performance, with curves tending towards the

upper left corner of the plot, indicative of higher TPR and lower FPR. This suggests that optimization

techniques enhance the model's ability to distinguish between positive and negative instances, resulting

in improved discriminatory power and overall effectiveness in classification tasks. Figure 5.6,5.7,5.8

and 5.9 illustrate the ROC curves of KNN, DT, RF, and Algorithms for

with optimization testing, respectively, providing insights into their respective classification

performance.

Figure 5.6: Figure 5.7 :

ROC curve for KNN ROC curve for RF

Figure 5.8: Figure 5.9:

ROC curve for DT ROC curve for LR

Precision-Recall (PR) curves offer another perspective on model performance, particularly in scenarios

with imbalanced datasets, and are crucial when evaluating models trained and tested with optimization

techniques. By plotting precision against recall, PR curves provide insights into the trade-off between

correctly identifying positive instances and minimizing false positives. Models trained with

optimization techniques typically produce PR curves that approach the upper right corner, indicating

higher precision and recall values. This suggests that optimization techniques contribute to achieving

a better balance between precision and recall, ultimately leading to more accurate and reliable

classification outcomes, especially in situations where correctly identifying positive instances is

paramount. Figure 5.10,5.11,5.12 and 5.13 illustrate the PR curves of KNN, DT, RF, and LR

algorithms for with optimization testing, respectively, providing insights into their respective

classification performance.

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00308 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

5.3.4 Comparative Analysis with past related work

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00309 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

Table 2.1 presents the classification accuracy over the past few years, summarizing notable results

obtained from various ML algorithms. It's noteworthy that while the datasets differ across studies, they

share a common objective: predicting diabetic patients from medical datasets containing essential

features. Notably, this study introduces a comparison to assess the performance of models trained and

tested with optimization techniques against those without optimization.

CHAPTER – 6 CONCLUSION AND FUTURSCOPE

Conclusion

Diabetes needs to be detected early before it reaches a dangerous stage. Hence, this study aimed to

identify the most effective and accurate machine-learning method for classifying objects by

implementing four different ML methods with a comparative analysis of past work.

In contrast to others, we used HT with NIO (FA) technique on data to produce the most accurate result.

Our experimental results demonstrate that using large datasets, the accuracy achieved by the RF

algorithm was the highest among all methods, measuring 99.62%. This encompasses exploring

alternative ML algorithms for predicting not only diabetes but also other diseases.

Future scope

By delving deeper into NIO algorithms and techniques, such as genetic algorithms, particle swarm

optimization, and ant colony optimization, we can unlock new levels of efficiency and scalability.

Leveraging advancements in computational power and algorithmic sophistication, the future scope for

the project involves refining existing NIO methodologies, exploring novel hybridization approaches,

and integrating cutting-edge optimization frameworks. This evolution aims to address complex

optimization challenges across diverse fields, from finance and logistics to engineering and beyond.

PROJECT OUTCOMES – PO/PSO MAPPING

Batch No : C11

Domain : Machine Learning

Project Title : Harnessing Nature Inspired Optimization Technique Using Hyperparameter Tuning in

Machine Learning Algorithms

CO

Course Outcomes for Student Projects
Relevance to

POs /PSOs

CO1
Understand and apply various nature-inspired optimization

algorithms to solve complex optimization problems in machine
learning. (K4)

PO1 – PO12

PSO1
CO2

Develop expertise in the art of hyperparameter tuning by exploring

different optimization strategies to fine-tune model parameters
effectively, leading to improved model performance and
generalization. (K4)

CO3
Gain practical experience in implementing and experimenting with

machine learning models across different domains, leveraging nature-

inspired
optimization techniques for model optimization. (K3)

CO4
Enhance critical thinking abilities by analyzing the behavior and

performance of nature-inspired optimization algorithms in the context
of hyperparameter tuning, and develop strategies to overcome

challenges
and limitations. (K5)

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

00310 JNAO Vol. 15, Issue. 1, No.11: 2024

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

CO5 Perceive effective communication skills, professional behavior and
teamwork(K5)

Project Outcome - POs/PSOs Mapping:

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO
10

PO
11

PO
12

PS
01

PS
O2

C409.1 3 3 3 3 - 3 - 3 3 3 3 3 3 3

C409.2 3 3 3 - 3 3 2 3 3 3 2 3 3 3

C409.3 3 3 - 3 3 3 3 3 3 3 3 3 3 3

C409.4 3 3 3 - 3 3 2 3 3 3 2 3 3 3

C409.5 3 3 - 3 - - 3 - - 3 3 3 3 3

Avg 3.00 3.00 3.00 3.00 3.00 3.00 2.50 3.00 3.00 3.00 2.50 3.00 3.00 3.00

REFERENCES

[1] R. Rastogi and M. Bansal, “Diabetes prediction model using data mining techniques”,

Measurement: Journal of the International Measurement Confederation (IMEKO), Measurement:

Sensors Volume 25, February 2023.

[2] M. E. Febrian, F. X. Ferdinan, G. P. Sendani, K. M. Suryanigrum, and R. Yunanda, “Diabetes

Prediction using Supervised Machine Learning'', Procedia Computer Science, 216,

pp. 21-30, 2023.

[3] S. S. Bhat, V. Selvam, G. A. Ansari, M. D. Ansari, and M H. Rahman, “Prevalence and Early

Prediction of Diabetes Using Machine Learning in North Kashmir: A Case Study of District

Bandipora”, Computational Intelligence and Neuroscience, Volume 2022, Article ID 2789760.

[4] K. Patel, M. Nair and S. Phansekar, “Diabetes Prediction using Machine Learning”,

International Journal of Scientific & Engineering Research Volume 12, Issue 3, March 2021.

[5] J. Xue, F. Min, and F. Ma, “Research on Diabetes Prediction Method Based on Machine

Learning”, Journal of Physics: Conference Series, 2020.

[6] M. Soni and S. Varma, “Diabetes Prediction Using Machine Learning Techniques”,

International Journal of Engineering Research & Technology, Vol. 9, Issue 09, September- 2020.

[7] L. J. Muhammad, E. A. Algehyne, and S. S. Usman, “Predictive Supervised Machine Learning

Models for Diabetes Mellitus'', SN Computer Science, 1, 240, 2020.

[8] A. Dutta, M. K. Hasan, M. Ahmad, M. A. Awal, M. A. Islam, M. Masud, and H. Meshref,

“Early Prediction of Diabetes Using an Ensemble of Machine Learning Models”, Int.

J. Environ. Res. Public Health, 19, 2022.

[9] D. Sisodia and D. S. Sisodia, “Prediction of Diabetes using Classification Algorithms”,

International Conference on Computational Intelligence and Data Science, Procedia Computer

Science, pp. 1578–1585, 2018.

[10] Q. Zou, K. Qu, Y. Luo, D. Yin, Y. Ju, and H. Tang, “Predicting Diabetes Mellitus with Machine

Learning Techniques”, Front. Genet. Vol. 9, pp. 1-10,

 2018.

[11] Dr. D. Manendra Sai, Et Al.,(2023)Utilizing Machine Learning Algorithms For Kidney

Disease Prognosis, European Journal of Molecular & Clinical Medicine, Volume 10,Issue 01 Pages

37-50.

[12] Dr. D. Manendra Sai, Et Al.,(2023) Machine Learning Techniques Based Prediction for Crops

in Agriculture, Journal of Survey in Fisheries Sciences, Volume 10, Issue 1s, Pages 3710- 3717.

http://doi.org/10.36893/JNAO.2024.V15I1N01.283-310

